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Abstract

We derive two oracle inequalities for regularized boosting algorithms for clas-
sification. The first oracle inequality generalizes and refines a result from [4],
while the second oracle inequality leads to faster learning rates than thase of [4]
whenever the set of weak learners does not perfectly approximate the target func-
tion. The techniques leading to the second oracle inequality are based on the well-
known approach of adding some artificial noise to the labeling process.

1 Introduction

One often employed method of finding a classifier with the help of empirical data
D = ((z1,y1),---, (zn,yn)) € (X x Y)™ is that of regularized boosting, see e.g.,
[L1]. In this approach, a familye; );c; of weak classifiers; : X — R is given, and,
with the help ofD, a weighted combinatiofi,- := ), wie; is constructed, where

w* := (w));es is areal-valued family that satisfies

Ao+ D i o o) <N ol Bl )+ )
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for some regularization parametgr> 0, some convex loss functioh, e.g. the lo-

gistic loss for classification, and some numeric tolerance 0. Here the family of

weak classifiers may, e.g., be the output of some classification algorithms such as neu-
ral nets, decision trees, or support vector machines. In this case, boosting may be
viewed as an alternative to the often used parameter selection step required by these
algorithms. However, the family of weak classifiers may also be a family of particular
simple functions such as decision stumps that are not output of a previous classification
algorithm. We refer to [11] for more information in this regard. Moreover, recall that
the regularization term was motivated by the fact the early boosting methods such as



AdaBoost may overfit in the presence of label noise, see, e.g., again [11] and the refer-
ences therein. Another approach to resolve this potential overfitting is early stopping,
which has been discussed by|[18, 2]

In recent years boosting algorithms have been successfully applied in various ap-
plication areas, such as optical character recognition, natural language processing, face
recognition, cancer detection, and text classification. We refer again to the durvey [11]
for more applications and corresponding references. In this regard we note that a partic-
ular nice feature of boosting algorithms is that basically no assumptions on the family
of weak classifiers need to be made. In particular, the input siatsenot required
to be a subset oR¢, which opens, like for support vector machines, the possibility
to deal with non standard data formats. For support vector machines, however, this
flexibility is only possible, if a reasonable kernel ahis available, which, at least in
some circumstances, may be not the case. In contrast to this, the boosting alddrithm (1)
does not need such requirements on its base function class determined by the family of
weak learners, and hence it may be applicable in potentially more situations. Last but
not least, the optimization problefn (1) is convexinand hence regularized boosting
offers computational properties similar to those of support vector machines. We refer
yet another time ta [11] for a detailed list of references. Finally, some more information
on boosting, which complemenis [11], can be found In [8].

For boosting methods based on optimization problems relatgd to (1), the articles
[10,/4,[1) 18] establish both universal consistency and learning rates, \Wwhere [4] consid-
ers an algorithm that, up to a discretization and some minor technical details, resembles
(@). So far, however, consistency and learning rates for the original approach described
by (@) have not been established. The first goal of this work is to close this gap by
establishing an oracle inequality for regularized boosting basefd on (1). From this or-
acle inequality, we then derive universal consistency and learning rates under natural
assumptions on the familie;);c; and the data-generating distributi®y where the
learning rates match those 0f [4] for the discretized versiop|of (1). As already observed
in [4], these learning rates become better for the logistic loss, if the posterior proba-
bility n of P is bounded away from the levels 0 and 1, i.e., if there is noise in each
label. As a consequenceé] [4] suggested to add some atrtificial noise to the labels. Our
second goal of this work is to establish an oracle inequality for this approach. Here
it turns out that, if the family of weak classifiers approximates the target function in
an optimal way, see Lemnja 2.3 for a precise statement of optimality, then this new
oracle inequality leads to the same learning rates as our first oracle inequality does. In
the absence of such perfect approximation, however, the new oracle ineglattys
leads to faster learning rates. Note that this better behavior is of particular interest, if
the used weak classifiers are the output of a classification algorithm, since in this case
perfect approximation can almost never be guaranteed.

The rest of this work is organized as follows. In Secfipn 2 we introduce all nec-
essary concepts, present our two oracle inequalities, and discuss some of their conse-
quences including consistency and learning rates. Sgdtion 3 contains all proofs.



2 Main results

In the first part of this section, we introduce all necessary notions for presenting our
main results. Our first oracle inequality is then presented and discussed in Subsection
[2.2, while the second oracle inequality is considered in Subséctipn 2.3.

2.1 Preliminaries

In the following we always writ&” := {—1, 1}. Moreover,X always denotes a com-
plete measurable space ané distribution onX x Y. We call a measurable function
L:Y xR — [0,00) aloss, and if there exists@: R — [0, c0) such that

L(y,t) = o(yt), yeY, teR,

we say thatl is a margin-based loss. In this case, we edlhe representing function

of L. Various loss functions used in classification algorithms are margin-based, here
we only mention the hinge loss, the (truncated) least squares loss, the logistic loss
represented by(t) := In(1 + exp(—t)), t € R, and the AdaBoost loss represented by
p(t) ;== exp(—t), t € R. For some simple properties of these losses we refef to [1] and
[14, Chapter 2.3]. Moreover, we need the classification Iogss : Y x R — [0, o)
defined by

Letass(y, 1) := 1(—oo0)(ysignt) , yeY, tek,

wheresign0 := 1 and1 4 denotes the indicator function of a sét Clearly, L a5,
which is used to define the learning goal of binary classificationoisnargin-based.

In the following, we say that a logs is (strictly) convex or continuous, if and only
if L(y, -) : R — [0, 00) is (strictly) convex or continuous for ajl € Y, respectively.
While all the margin-based losses considered above are both convex and continuous,
L.ss does not satisfy either of these properties. Furthermore, we say that & iess
locally Lipschitz-continuous if for alt > 0 there exists a constant > 0 such that

|L(y,t) — L(y,t")| < calt —1'], yeY, tt €l—a,a.

Moreover, fora > 0, the smallest such constant is denoted by L|, ;. Finally, if
we have|L|; := sup,sq|Lle,1 < oo, we call L Lipschitz continuous. For margin-
based losses, we refer to [14, Lemma 2.25] for some simple connections between
these notions. In particular, recall that convex, margin-based losses are always locally
Lipschitz-continuous. Finally, we say that a margin-based lo$s k-times contin-
uously differentiable, if its representing functignis k-times continuously differen-
tiable.

Given a loss functiod, and a functionf : X — R, we often writeL o f for the
function X x Y — [0, oo) defined by

Lo f(z,y) == L(y, f(z)), yeY,reX.



Now letP be a distribution oiX x Y. ForalossL : Y x R — [0, oo) we then define
the L-risk of a measurable functigh: X — R by

Rup(f) = /X LS (@) dP(ay)
- /X (@)L, f(@) + (1 - n(@)L(~1, f(z)) dPx (x).

whereP x denotes the marginal distribution Bf andn(z) := P(y = 1|z), 2 € X,
the posterior probability oP. Note that these definitions yiel®, p(f) = EpL o f,
and depending on the situation we will use either of these notations. Finallys ithe
empirical measure of a sample $&t= ((z1,y1), ..., (Zn,yn)) € (X xY)™ of length
n, we usually writeR;, p(f) := Rrp(f). Analogously, we denote the empirical
expectation with respect tb by Ep.

Throughout this work the smallest possililaisk

Lp=f{Ryp(f)]f: X — R measurablé

is called the Bayes risk with respectlfoand L. Furthermore, a measurable function
fip X = Rwith R p(ffp) = R p is called a Bayes decision functipnFor
example, it is well-known thaf; ~ p(z) = sign(2n(z) — 1), z € X, is the Bayes
decision function for the classification loss. We usually ¢all 1 the Bayes classi-
fier.

In the following, we call a Banach spaéethat consists of functiong : X — R
a Banach function space (BFS) ovEr and we always denote the closed unit ball of
E by Bg. Clearly, reproducing kernel Hilbert spaces (RKHSs) are Banach function
spaces. In order to introduce another type of BFSs we need the notation

l(wi)ierlleyry =Y lwil,
i€l
where! is an at most countable and non-empty set, @nd;c; C R is anRR-valued
family overI. Clearly, the space
0 (1) = {(wi)ier = [(wi)ierlle, 1y < 00}
is a separable Banach space. With the help of this space, the following lemma, whose
proof can be found in Secti¢n 3, introduces the type of BFSs we are most interested in.

Lemma 2.1 LetI be an at most countable and non-empty set, @afl<; be a family
of bounded functions; : X — R with ||e;|l < 1forall i € I. We define

E = {f : X — R|3(wi)iesr € ((I) with f(z) = Zwiei(m‘) for all Vo € X},

i€l

INote, that unlike some other authors we demand that Bayes decision functiaeslavalued rather
than extended real-valued. However, in Subsegtioh 2.2, we will also briefly deal with extended real-valued
minimizers.



where we note that the uniform boundedness of the fa@ily-; ensures that the sum
above converges absolutely for everg X . Furthermore, forf € E, we write

Iflle = inf{z wil : (wi)ser € (I) with f(2) = we;(x) for all Va € X} :

el i€l
Then(E, || - ||g) is a separable Banach function space that consists of bounded func-
tions and we have

1flle < [IfllE, feE.

Finally, if all e;, i € I, are measurable, theR consists of measurable functions.

Bounds on the generalization performance of regularized empirical risk minimizers
often include a complexity measure of the underlying function class. Since in this work
we will use average empirical entropy numbers as a complexity measure, let us briefly
recall the definition of entropy numbers. To this end,(IEtd) be a metric space and
n > 1 be an integer. Then theth (dyadic) entropy number &f, d) is defined by

2”—1
en(T,d) = inf{€ >0:35s1,...,5m1 € T suchthafl' C U Bd(si,a)} ,

i=1

where we use the conventianf () := oo. Moreover, if(T), d) is a subspace of a normed
space E, | - ||) and the metriel is given byd(z, z') = || — 2/||, z,2" € T, we write

en(T) ] |) = en(T,E) :=e,(T,d) .

Finally, if S : E — F'is a bounded, linear operator between the normed spacesl

F, we writee,(S) := e,(SBg,| - ||r). Entropy numbers are closely related to the
well-known covering numbers; in fact, both concepts are inverse to each other modulo
constants. We refer to, e.d., [14, Lemma 6.21 & Exercise 6.8] for precise statements
and to [6] and[[14, Appendix A.5.6] for several properties of entropy nhumbers. In the
following, we are only interested in entropy numbers that are computed with respect to
the norm of an empirical,-space. To be more precise, étbe a non-empty set and

D € Z™ be afiniteZ-valued sequence of length> 1. For Z — R, we then define

1 n
1117,y = ﬁz £ (z:)]* = Eplf|?,
=1

and denote the corresponding Hilbert space of equivalence clasg§by. Note that

if Eis the BFS introduced in Lemnja 2.1 aitk € X™, thene;(id : E — Ly(Dx))
equals the-th entropy number of the absolute convex hull of the faniily);c;. By
results from, e.g.[ 17,159, 12] the latter can be estimated from the entropy humbers of
the family (e;);c1.

2.2 An Oracle Inequality for Regularized Boosting Algorithms

In this subsection, we establish our first oracle inequality for regularized boosting al-
gorithms and discuss some of its consequences.
Let us begin by formally introducing these learning methods.



Definition 2.2 Let FE be a Banach function space ov&randL : Y x R — [0, o) be
a convex loss function. Given)a> 0 and ane > 0, we call a learning method that
assigns to everp € (X x Y)™ afunctionfp » : X — R such

Al fp.a

le +Rop(for) < }Ielg)\Hf||E+RL,D(f)+e 2

an e-approximate regularized boosting algorith@@ARBA) with respect t& and L.

Let us briefly check that the definition above matches our notion of regularized
boosting algorithms from the introduction. To this end, we fix the BFF®itroduced
in Lemmg 2.1. For amw := (w;)ier € £1(I), we further defingf,, := >, wie;. By
the definition of|| - ||z we then immediately obtain

)‘waHE + RLD(fw) < )‘Z |w1| + RL,D(fw)
el

forall w € ¢,(I). Conversely, given aii € F and are > 0, there exists aw € ¢;(I)
with f = f, and|lwl|¢, (1) < ||fl|e + ¢, and hence we find

A lwil + Re,n(f) < Allfulle + Rep(f) +e.
i€l

From these two inequalities it is straightforward to check thiat (2) is equivalet to (1).
However, our definition of-ARBASs is not restricted to the BFS of Lemipal2.1. Indeed,

if Eis a separable RKHS, we obtain a support vector machine (SVM) whose regular-
ization term is not squared. Recall that such SVMs have been recently investigated in
[BL13].

If the BFS E considered in[(2) is separable and consists of bounded measurable
functions, it is easy to show by an almost literal repetition of the prodf of [14, Lemma
6.23] that there exists a measurable version in the sense lof [14, Definition 6.2] that
satisfies[(R). In the following, walwaysimplicitly assume that we consider such a
measurable version.

We also need infinite sample versionseéARBAs. To introduce these, we fix a
distributionP on X x Y and assume that the BHES over X consists of bounded
measurable functions. Then evefy » € E satisfying

AMlfealle +Rop(fer) < }Iele)\HfHE +Rrp(f) +e 3)

is called an infinite sample version of thkéARBA with respect toF’ and L. Finally,
we define the corresponding approximation error function[0, co) — [0, c0) by

AQA) = }gg/\llfllE +Rep(f) —=RLp, A>0.

The following lemma collects some useful properties of the approximation error func-
tion. Here we note that the implication frofn| (5) to(\) < cA for all A > 0 was
already observed in [4].



Lemma23L:Y xR — [0,00) be a convex los€ be a BFS ovelX that consists

of bounded measurable functions, dnde a distribution onX x Y. Assume that’

is sufficiently rich in the sense off ;e R1,p(f) = Ry p. Then the approximation
error functionA : [0, 00) — [0, c0) is increasing, concave, and continuous. Moreover,
we haveA(0) = 0 and

A o AN 0<A< K, @)
K A
AN < Rep(0)—Rip, A>0.
In addition, A( - ) is subadditive in the sense of
AN+ k) < AN+ A(k), Ak > 0.

Moreover, for a constant > 0, we haveA(\) < ¢A for all A > 0 if and only if we
have

félc}ng RL,P(f) = RL,P . (5)
Finally, if there exists arh : [0,1] — [0, 00) with limy_+ h(A) = 0 and A(\) <
Ah(X) for all A € [0, 1], then we havel(\) = 0 forall A > 0, andR p(0) = R} p.

Before we can present our first oracle inequality, we finally need to assume a vari-
ance bound. To formulate the latter, we fix a convex, margin-based.lesth L # 0
and a distributior? on X x Y. We definep(—o0) := lim;—, _, ¢(t) ande(co) :=
lim;_,, ¢(t), wherey is the representing function @f, and extend. to Y x [— oo, 0]
in the same way. By the convexity éfit is then easy to show that there exists a mea-
surable functiorf; p : X — [~o0,00] such thatlRy p(f7 p) = R} p. Moreover, we
can choosg; p such thatf; p(x) = +oc if and only if P(y = 1|x) € {0,1}. Letus
fix such anf} . Then, we say thak satisfies a variance bound fBr if there exists a
constant > 1 such that

Ep(Lof—Lofip)®<c|Lo fllw (EpLof—Lof]p) (6)

for all bounded measurable functiofis X — R. We refer tol[1] and.[4] for various
examples of margin-based losses, including the logistic loss for classification and the
AdaBoost loss, that satisfy|(6). In particular, recall [4, Lemma 19], which provides an
easy sufficient condition fo[ [6) to hold.

With these preparation we can now present our first main result that establishes an
oracle inequality for approximate regularized boosting algorithms.

Theorem 2.4 Let F be a separable Banach function space ovetthat consists of
bounded measurable functions and whose norm satifids, < || - ||z. Moreover,
let P be a distribution onX x Y and L be a margin-based loss that is convex and
Lipschitz continuous withZ|; < 1. In addition, assume that its representing function
o satisfiesp(0) < 1. We further assume th& and L satisfy the variance bounE](G).
We fix ann > 1 and further assume that there exist constants 1 andp € (0,1)
such that )

Epy~puei(id: E — Ly(Dx)) < ai” 2



forall : > 1. Then there exists a constafit> 1 only depending op andc such that,
forall A € (0,1] andr > 1 satisfying\n > K7 and\'*Pn > a?? K, every\/2-ARBA
with respect taF and L satisfies

P(D € (X x V)" : Al foalle + Rep(fon) — Ryp < 24(N) + /\> >1—e .

Note that it is possible to derive a formula for the constgritom the proof of The-
orem 2.4. However, the formula has a relatively complicated structure, and in addition,
we conjecture, that the resulting values forare overly pessimistic. Consequently, we
omit the details for the sake of simplicity.

One simple way to ensure the average empirical entropy number assumption of
Theorem[(2.4) is to assume a uniform empirical entropy number assumption. Recall
that the latter type of assumption has been widely used in the literature. For example,
for RKHSs, the smoothness of the corresponding kernel can ensure such an entropy
bound, see, e.gl,_[14, Theorem 6.26]. Moreover, for the BFSs considered in Lemma
[2.7, [1,04] bound these entropy numbers in terms of the VC-dimension of the family
(e;)icr- Finally note that although these approaches are easy to use, they may, however,
be sometimes not tight. We refer to [14, Theorem 7.34] for an example in this direction.

Let us now briefly illustrate the consequences of the above oracle inequality for
ARBAs that uses the BFS of LemmaPR.1. To this end, we fix a sequengec (0, 1]
such that\}*Pn > o?? K for all sufficiently largen > 1. For example, we can choose
Ay, 1= n" T In(n 4 1) if we do not have good estimates for the values @ind K.

If the BFS E is rich in the sense difcgp R p(f) = R71 p for all distributionsP

on X x Y, then the\,-ARBA is universally consistent with respect to the rigk p.
Moreover, if L is classification calibrated in the senseldf [1], iz#&(0) < 0, then the
An-ARBA is also universally classification consistent. Finally, note that [14, Theorem
5.31], see alsa [4, Lemma 16], shows that the richness assumption above is satisfied if
E is dense inL; (p) for all distributionsi, on X, and by [14, Theorem 5.36] one can
show that for many loss functions the converse implication is also true. In particular,
the logistic loss for classification is such a loss.

Let us now assume that there exists constants 0 and3 € (0, 1] such that
A(N) < eXPforall A > 0. The sequencé),) considered above then yields the

learning ratex” ™ for the R p-risks of the ARBA. Recall that [1] showed that this

leads to the learning rate” =% for the classification risk, and if the distribution sat-
isfies Tsybakov’s noise assumption, de€ [16], this rate can be improved up to the rate

n~ 75 . We refer to [1] and[14, Chapter 3 & Chapter 8] for details. In any case, these
learning rates coincide with the learning rates established in [4] for certain discretized
versions of ARBAs, where we refer tol[4, page 884] for the necessary translation of
VC-dimension bounds to entropy number bounds. Finally, [4, Corollary 9] shows that
these learning rates are asymptotically optimdlifs built from decision stumps, the
logistic loss is used, and the functighi , : X — [—o0, 00] is of bounded variation.
Note that the latter implies that the posterior probabitity X — [0, 1] is bounded
away from zero and one and that= 1. In order to artificially enforce the former,l[4]
suggests to add a coin flipping noise to the labels. In the following subsection, we will
establish an oracle inequality for this approach, which,Jot. 1, leads to improved



learning rates.

2.3 Oracle Inequalities for two-sided losses

As mentioned at the end of the previous subsection, our goal in this subsection is to
establish an oracle inequality that addresses the idea of adding a coin flipping noise to
the labeling process. The key technique to establish this oracle inequality is to translate
this additive noise into a loss function that enjoys additional properties. With the help
of these properties we can then refine our analysis in thetasé.

Let us begin by introducing some more notions. Followind [14], we say that a loss
L can be clipped at/ > 0if, forall (y,t) € Y x R, we have

L(y, %) < L(y,1),

where? denotes the clipped value bt +M, that is

-M ift<-M
T:=<t if t € [-M, M] @)
M ift> M.

Moreover, we say that can be clipped if it can be clipped at sodg > 0. Informally
speaking, losses that can be clipped, allow us to restrict our consideration to prediction
values betweern M andM . With the help of[[14, Lemma 2.23] it is easy to check that
a margin based losk can be clipped if and only if its representing functiprhas a
global minimum. Ify is continuous, we can then choakgto be the smallest value at
which this global minimum is attained.

The following lemma gives a simple criterion when a convex, margin-based loss
has a Bayes decision function for all distributidh®n X x Y.

Lemma 2.5 Let L be a convex, margin-based loss. THenan be clipped, if and only
if there exists a Bayes decision functifh, : X — R for all distributionsP on X xY".
In this case, there always exists a Bayes decision funcgtjop : X — [-M, M],
whereM > 0 is a real number at whicll can be clipped.

Obviously, neither the logistic loss nor AdaBoost loss can be clipped, and it is well-
known, that they fail to have a Bayes decision function for exactly the distribuitons
that have a noise-free region for the labeling process, i.e,

Px({zx:n(x)=0o0rn(z) =1}) > 0. (8)

On the other hand, if we have a convex, margin-based/losss not hard to see that
there exists a Bayes decision functih, for all distributionsP on X x Y that do
notsatisfy [8), i.e., for distributions that are noisy everywhere. In addition, this Bayes
decision function i x-almost surely determined if is strictly convex. For example,

for the logistic loss, we have

) o n(@)
fL’P(x)_lnl—n(gc)’ r € X,

9



and for the AdaBoost loss we hayg . (z) = iln 12(7?&) ,x € X. Clearly, ifn(z) ap-
proaches 0 or 1, these Bayes decision functions become unbounded as we have already
used at the end of Subsect[on|2.2. Since by [14, Corollary 3.62] every reasonable learn-
ing algorithm based on these loss functions has to approxififate we see that such
algorithms have to approximate potentially unbounded functions. In order to avoid
such a behavior, a commonly used trick, see €.gl, [17, page 2280]land [4, page 873],
is to add some noise to the labeling process. More precisdlyjdfa distribution on

X x Y with marginal distributiorP x and posterior probability, and0 < ¢ < 1/2,
we can define a new distributid®®) on X x Y by ng) =Py and

() == (1 - 8)n(x) +6(1—n(x)), z € X.

In other words,P(®) is constructed by adding some noise of ordeo the posterior
probabilityn of P. Now note that we have/2 < ¥ (z) < n(z), if n(x) > 1/2, and
n(z) < n®(z) < 1/2, if n(x) < 1/2. Consequently, the Bayes classifiers of both
distributionsP andP(®) coincide. Moreover, it is easy to see that 1) (z) <1 -,
i.e.,P( is noisy everywhere. In particular, all convex and margin-based losses have a
Bayes decision function fdp(®).

Our next goal is to encode the above construction into a loss function. To this end,
we need the following definition.

Definition 2.6 LetL be aloss function an@l < § < 1/2. Then the)-two-sided version
Ls : Y xR — [0, 00) of L is defined by

Ls(y,t) == (1 = 6)L(y,t) + 6 L(—y,t), yeY, teR.

Note that, for every distributiol? on X x Y and every measurabje: X — R, a
straightforward calculation, see (16) apd](17), shows

Risp(f) =Repe (f)- 9)

In other words, adding some noise to the posterior probabilities is, in terms of the learn-
ing goals described by the risk functionals, equivalent to using the two-sided version
of a loss function. However, in terms of algorithmic design, there may be a substan-
tial difference in both approaches. Indeed, a straightforward implementation of using
P(®) would individually flip each labey; of the training set with probability whereas
an algorithm based of; pretends to seg; with probability (1 — ¢) and —y; with
probability é, simultaneously.

Before we present our oracle inequality for algorithms basefisowe need a few
more preparations. Let us begin with the following lemma that collects some simple,
yet useful properties of two-sided versions of margin based losses.

Lemma 2.7 Let L be a convex, margin-based loss and real number with) < § <
1/2. Then the following statements are true for thevo-sided versiorL; of L:

i) Ls is Lipschitz continuous, or strictly convex if and onlyifs.

10



i) Ls can be clipped at

Ms :=inf{t € R: Ls(1,t) < Ls(1,s) forall s € R} . (10)

iii) For every probability measu® on X x Y there exists a Bayes decision function
fisp o X — [=Ms, Ms]. In addition, if L is strictly convexf; p is uniquely
determined and we have

fig,p = fz,pm :

With the help of the lemma above we can now introduce the learning methods we
consider in this subsection.

Definition 2.8 Let E be a Banach function space ov&r, L : Y x R — [0,00) be a
convex, margin-based loss function, abglits §-two-sided version for sone< § <
1/2. Given aX > 0 and ane > 0, we call a learning method that assigns to every
D e (X xY)™afunctionfp  : X — R such

(o) < E Alflls + Ren(f) +e (11)

a clippede-approximate regularized boosting algorithmCARBA) with respect té&
and L. Here, the clipping operatioft' is with respect ta\/s defined in).

CARBAs are a particular example of more general, clipped regularized empirical
risk minimizers introduced in_[14, Chapter 7.4]. We refer to this chapter for a discus-
sion of these learning methods including the existence of measurable versions.

Before we can establish an oracle inequality for CARBAs we finally need to present
a variance bound for two-sided losses. This is done in the following proposition, which
extendsl[[4, Lemma 19].

Proposition 2.9 Let L be a strictly convex, twice continuously differentiable, classifi-
cation calibrated, and margin-based loss. We fixw&ith 0 < § < 1/2 and definel/;
by (109). We further write

s (2O (DD + (D)
Cda"p{ 00 (0) + ¢ D (D)

andCy,(6) := max{0, C7(5)}. Then for all distributions® on X x Y and all measur-
able functionsf : X — [—Mj, Ms] we have

—@w—wewwekMaMﬁ

Ep(Lso f—Lo fza,P)2 < (p(Ms) +p(—Ms) + CL(8))Ep(Lso f — Lo fz,;,P)-

Note that the strict convexity and differentiability ofis actually only needed on
the interval[— Mj, Mjs], if the Bayes decision functioffi;, p is uniquely determined.
Moreover, the same is true for the following theorem, which presents the already an-
nounced oracle inequality for CARBAS.
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Theorem 2.10 Let E' be a separable Banach function space oxethat consists of
bounded measurable functions and whose norm satifigs,, < | - ||z. More-
over, letP be a distribution onX x Y and L be a margin-based loss that is strictly
convex, twice continuously differentiable, classification calibrated and Lipschitz con-
tinuous with|L|; < 1. In addition, assume that its representing functiorsatisfies
»(0) < 1. We fix am > 1 and further assume that there exist constants o (—M;)

andp € (0, 1) such that

Epy~prei(id: E — Lo(Dx)) < ai” %

forall + > 1. Then there exists a constafiit > 1 only depending oiL, ¢, andp such
that, for all A € (0,1], ¢ > 0, andT > 0, everye-CARBA with respect t& and L
satisfies with probability>™ not less tharl — e~

a? \t5 7 30A()\)
o)

Mfoalle+Resp(foA) =R, p < 15A(/\)+K( L v
where the approximation error function is with respégt

+3e,

Let us now briefly compare the consequences of Thepren 2.10 with those of The-
orem2.4. To this end, we again consider a BF8efined by Lemmpa 2]1. Obviously,
Theoren{ 2.10 yields consistency bf-CARBAs if we fix a sequencé),,) C (0, 1]
with \,, — 0, A2’n — oo, and\,n > 1 for all n > 1. Moreover, if we assume that
there exist constants > 0 and € (0,1] such thatA(\) < c)? for all A > 0, then
[14, Lemma A.1.7] shows that, := n~", wherg|

pi= min{l,iﬁ(1 _]13) +2p}7

asymptotically minimizes the right hand side of the oracle inequality of Theorem 2.10.

Obviously, this yields the learning rate *? with respect to the risik 1, p, and by

(9. this rate can be immediately translated into a learning rate for binary classification.

Analogously to the learning rates derived from Theofem 2.4, these learning rates can

be further improved iP, or equivalentlyP(%), satisfies a Tsybakov noise assumption.
Finally note thatformally the learning rates,—*° are faster than those derived

from Theoren] 24, whenevet < 1, while for 5 = 1 both learning rates coincide.

However, strictly speaking we cannot compare both learning rates since they are based

on assumptions odifferentapproximation error functions. In this direction we note

that the decision stumps considered by [4] only yigld= 1 for the logistic lossL

if 2 — In 13?&) has bounded variation. In particulariz) must be bounded away

from both 0 and 1. On the other hand, it is easy to check that the approximation error

function for a two-sided versiofi; of L satisfiesA(\) < ¢ for a constant: > 0 and

all x > 0, if z — n(x) has bounded variation. In particular, itnet necessary that

n(x) is bounded away from zero and one, i.e., the faster learning rate of Theorgm 2.10

holds under weaker assumptionsnWe conjecture, that this relationship between

the two approximation error functions holds in most situations.

2Note that this choice oh,, obviously requires knowledge g8, which, in general, is not available.
However, sincelLs can be clipped, the adaptive training/validation approach_of [14, Chapter 7.4] can be
easily modified to CARBAs.

12



3 Proofs

Proof of Lemmg2.1:We obviously have|f||z > 0 for all f € E, and it is also
obvious that| ||z = O ifand only if f = 0. Now let f, g € E have the representations
f= Ziel w;e; andg = Ziel v;e;, Where we note that our assumptions guarantee
that the sums converge pointwise absolutely. We thenffindg = >, (w; + v;)e;,

and hence we conclude

If+glle <D lwi+vil <D Jwil + > Jvil -
el i€l el

Considering the infimum over all representationg ehdg, we then obtain the triangle
inequality for|| - || . The homogeneity df- ||z, i.e.,||af]lg = |a|- || f||z can be shown
analogously.

Let us now show that - ||z is completﬁ To this end, we fix sequenc¢;),>1 C E
with 372 | || f;ll = < co. Moreover, for allj > 1, we fix a representation

=Zw§j)e

iel

suchthab ,; |w§j)| <|fille +277. Forig € I we then have

3 <J>|<ZZ|w(” Z £l +279) < oo, (12)
j=1 j=1€l j=1
and hencev;, := > 27 w) does exists. Moreover, by ignoring the first inequality on

the left hand side oiZ) we further see that|(12) yidlds);c; € ¢1(I). Let us now
definef := >, ., wie; € E, where we note that this sums also converges pointwise
absolutely sincew;);cr € ¢1(I) and alle; are assumed to be bounded functions.
Consequently, for al € X, we have

ifj(x) > (w Zw“’)ez D= Y wfelo)

el i€l j=n+1

and from this we deduce
lr->5], <3| 3w 3 Sl < Y (Inls+2) <
j=1 1€

Jj=n+1 j=n+1li€el j=n+1
for all sufficiently largen € IN. In other words, we have founfl = Z;‘;l fj, where
the convergence is with respectto|| z. From this we easily deduce the completeness
of || - || -

The separability of is trivial, and so is the fact that the measurability ofealimplies
the measurability of alf € F.

30ne could shorten this part of the proof by using the factithe?; (1) — E defined by(w;);er +—
Zie] wje; is, by definition, a metric surjection. However, we preferred to present an elementary proof.
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Finally, in order to show thak' consists of bounded functions, we fix #ire £ and a
representatiorf = . _; w;e;. We then obtain

1lloo = || D wiea]| <D il
i€l el

and by taking the infimum over all representations, we thusfifid, < ||f||lz. W

3.1 Proofs of the results related to Theorerh 214

Proof of Lemmg 2.B:Besides the equivalence related[tp (5) all assertions follow by a
literal repetition of the proof of [14, Lemma 5.15]. Let us now assume that we have
A(XN) < cXforaconstant > 0 and allx > 0. We fixa\ > 0 and are > 0, and define

0 := ecA. There then exists af, . such that

MArelle S Maelle + Rop(fae) —Rip < AN +6 < (1+e)eh,

and hence we concludg . € (1 + ¢)cBg. For fixede > 0 andA — 0 we further
concludeR  p(frc) — R} p» and therefore we find

inf R =R

fe(llila)cBE Lp(f) L,p
forall e > 0. By lettinge — 0 we then obtain[(5). Conversely, [f|(5) holds, there
exists, for alle > 0, anf. € cBg such thaR, p(f:) < R} p + . Consequently, we
find
AN) < AMIfelle + Rep(fe) = Rrp <ch+e

forall A > 0 ande > 0. By lettinge — 0, we then obtaim(\) < cAforallA > 0. &

In the following lemmas, we considerapproximate regularized boosting algo-
rithms and their infinite sample counterparts. Before we can formulate these lemmas
we need to introduce one more notation. To this end, we fix a separablé& B8 X
that consists of bounded measurable functions, a loss funktidri x R — [0, o), a
A >0, andare € [0,1]. Thenfor allf € E we definegs ) : X xY — R by

gra(@y) = Al flle + Ly, f(2)) = Alfexll = Ly, fea(x) (13)

where fp , denotes an arbitrary bdixed function satisfying Kp) for some fixed €
[0, 1].

The following lemma, which is needed for the proof of Theofen 2.4, establishes a
supremum bound oy ».

Lemma 3.1 Let E be a separable BFS ove¥ that consists of bounded measurable
functions and whose norm satisfies||., < || - ||z. Moreover, letP be a distribution

on X x Y and L be a convex, Lipschitz continuous, and margin-based loss whose
representing functiop : R — [0, co) satisfiesp(0) < 1, and whose Lipschitz constant
satisfie§L|; < 1. Thenforalld0 < A < 1andf € FE we have

AN) +Epgya+e¢
A

lgialleo < 4- (\) . PYfA as)

Iflle < (14)

A

14



Proof: Let us fix anf € E. Then we have

Mfle < Mflle+Rep(f) —Rip
< AMfealle + Rep(fen) —Rip +Epgra
< A(A) +Epgpa +e,

and hence[ (14) follows. In order to show |15), we first observe that the Lipschitz
continuity of ¢ together withp(0) < 1 impliesL(y,¢) < 1 + |¢t| forally € Y and
t€R.By| |l < |-l and[14), we consequently obtain

[Alfllz+Lofl, < Alflle +1+ 1/l

AN\ +E
< AN +Epgrr+et+1+ (A) + Epgya + €

A
< 2.A()\)+)\+Epgﬁ,\+6’
- A
where in the last step we uséd< A < 1. Since this inequality holds for aji € F,
we then obtain the assertion. |

The following lemma translates the variance bo@d (6) into a bOUfﬂD@i)\.

Lemma 3.2 Let E be a separable BFS oveé¥ that consists of bounded measurable
functions and whose norm satisfies||», < || - ||z. Moreover, letP be a distribution

on X x Y and L be a convex, Lipschitz continuous, and margin-based loss whose
representing functiop : R — [0, o) satisfiesp(0) < 1, and whose Lipschitz constant
satisfie L|; < 1. Assume that the variance boufid (6) holds. Then fonadl (0, 1]

and all f € 2\~ By we have

Epg?, < 12¢ A7 (AN + A+ Epgya +€)°.

Proof: We fix aX € (0,1] and anf € 2A\~!Bg. Using the shorthandg := Ep,
g:=gsx,and| || = || aswell asg(a; + az + a3)? < 3a? + 3a3 + 343 for all
a1, ao,az > 0, we then obtain
2

EMNFII = Al feall+ Lo f—Lo fpx)
SN[ FI2 + 3N fe a1 + BE(L o f — Lo fp 1)

* 2 *
< 6E(Lof — LOfL,P) + 6E(LOfL,P - LOJCP,/\)2 + 3NN 1P 4 3N feall?

E92

IN

Let us writeC' := max (|| flloo + 1, || fr,x

| + 1). Then the assumptioh|(6) implies
E(Lof—Lofip) +E(Lofip—Lofpy)
< cC(E(Lof—Lofip)+E(Lofon—Lofip)).

By assumption we further have| f|| < 2, and sincep(0) < 1 ande € [0,1] we also
have
M feall S A feall + Rep(fea) SRLp(0) +e<1+e<2.
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Combining these estimates, we thus obtain

Eg? < 6¢C (E(Lof — Lofi p) +E(Lofe — Lo ff p)) +332FI*+3? foa
< 6¢C (E(Lof— Lofi p) +E(Lofoa— Lofi p) +AISI+Alfeal)
=6¢cC (Eg +2E(Lo fpx— Loff p) + 2)\HfP,/\H>
<12¢C (A(A) +)\+Eg+e) :

Let us finally bound the consta6t To that end, observe that Lemma]3.1 implies

AN+ A+ Epgpr+e
A

for all f € E. Combining this estimate with our previous considerations then yields
the assertion. |

[flle +1 < Ifllz+1<

Finally, we need to translate the entropy number bound assumed in Theofem 2.4
into an entropy number bound on certain sets of functions of the §grm

Lemma 3.3 Let F be a separable Banach function space owvérthat consists of
bounded measurable functions and whose norm satisfigs < || - || z. Moreover, let

P be a distribution onX x Y and L be a Lipschitz continuous and margin-based loss
whose representing functian: R — [0, co) satisfiesp(0) < 1, and whose Lipschitz
constant satisfied.|; < 1. Assume that for a fixed > 1 there exist constanis > 1
andp € (0, 1) such that

EDXprei(idiEHLz(Dx)) Saifﬁ, iZl.
For A € (0,1] ande > 0 withe < A(X) + A + ¢, we define

QE()\) = {gﬁ)\ : f S 2/\713]5 and]Epgf,,\ < e’:‘} .

Then we have

AN +A+ete. o

EDNPﬂei(ga()‘)v [l - ||L2(D)) Sgpa A e

1> 1.

Proof: Let us fix aX € (0,1] and are > 0. For A := 2L \ye then observe by

(
Lemmg 3.1 thafl f||z < Aforall f € G.(\). MoreoverA < 1,e <1, A(\) <1, see
Lemmg 2.8, and < A(\) + A +¢, impliesA < 6A~1. Let us now define the auxiliary
sets

g = {Alflle+Lof:feABg},
R = {Alflle:feABg},
H = {Lof:feABg}.
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The translation invariance and additivity of the entropy numbers, see the arguments on
pages 11 & 12 of [6] for the latter, then yields

Ep~pre2i—1(G(A), || ll,0)) < Epapnesi—1(G, | - lram))

Epwpn (€(Ry - o)) + (M, - la0))
€i([0,6],]-|) + AEpy~pryei(Be, |- | Lomy))
3.27 4 ahi" %

&al(2i — 1) |

IA

IN

IAIA

wherec, is a constant only depending pnBy the monotonicity of the entropy num-
bers, we then also find the assertion for even indices, if we increase the capdignt
a factor only depending om [ ]

Proof of Theoren] 2.4:We write G(\) := {gs.» : f € 2A~'Bg} and definegj.()\) as
in Lemmd 3.B. Moreover, we write

AN+ +e+e
A

forall A € (0,1] ande > 0 with e < A(X\) + A + €. Forgy,, € G.(\) we then have
lgrallee < 4A(N,€) andEpg? , < 12¢AA%(, ) by Lemmag 3]1 arjd 3.2. Moreover,
Lemma[3.B shows

Ep~pnei(G-(N), || 2. m)) < cpaA(/\,e)i’ﬁ )

AN e) =

By symmetrization and_[14, Theorem 7.16], which translates bounds on average en-
tropy numbers into bounds on local Rademacher averages, we thus find a constant
Cp > 2c only depending op andc such that

wpn(G(A),e) = Ep.pn sup ‘Epg—EDg‘
g€G(N)
Epg<e
= Ep~p» sup |Epg—Epy|
g€G:(N)
< CpA(Ne) max{ap)\l%p n_%,al%n_ﬁ} .

We now define := A(\) + A +¢, which impliesA (), e) = 2eA™!. ForK := 1024C}
and\'*Pn > a?? K we hence obtain

wpn(G(A),e) < QCpamax{ap)\*% n*%,a%)fln_ﬁ} < 1i6
We further writeF := G(\) and
Cof=Alflp+Lof.

For:=1,b:=4/xandB := 4. 2224 e then see that the supremum bound (6)
of [15, Theorem 3.1] is satisfied. Moreover, the variance bound (7)_o6f [15, Theorem
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3.1] is satisfied fow := ¥ := 1, w := 3¢, andW := 3c¢(A(\) + A + ¢€). In addition,
An > K1 andC, > 2¢c imply

\/27(655 + B)Y(we? + W) \/247’6)\/\2()\,6) _ /%6
n o n - K

27 (be” + B) _ 87A(Me)  87e < €
n N n T T 1287
Using these estimates together with a repetition of the proof of [15, Theorem 3.1] for
a :=1/2 instead ofz = 0, we further see that every 2-ARBA satisfies

IN

£
4

and

Mfoalle + Rep(for) —Rip <Alfealle + Rep(fer) —Rip +e

with probability P™ not smaller thari — e~". Since we obviously havg/2 < ¢/2,
we then obtain the assertion for— 0. [ ]

3.2 Proofs of the results related to Theorerh 2.10

Proof of Lemmd 2.5:The assertion immediately follows by combinirig [14, Lemma
2.23], [14, Lemma 3.12], and [14, Lemma 3.64]. ]

For the proof of Lemm@ 2|7 and Propositjon]|2.9 we need some preparations. To
this end, we define, as in[14, Chapter 3], the inner risk of a loss funétioll x R —
[0, 00) by

Conlt) = /Y L(y, 1) dQ(y) = nL(1, 1) + (1 — ))L(~1,2), {ER,

whereQ is a distribution ort” andn := Q({1}). Obviously, theL-risk of a function
f + X — R can then be computed by

Rip(f) = /X Chmey (f(2)) dPx . (16)

Moreover, for0) < § < 1/2 we definen® := (1—§)n+35(1—n). Asimple calculation
then shows

Crsn ()

n(1 —90)L(1,t) + ndL(—1,t)
+(1—=n)(1—=0)L(—1,t) + (1 —n)oL(1,¢)
N L(1,t) + (1 =) L(-1,1)
Cr o (t) (17)

for all t € R. Obviously, if we define the minimal inner risk of a loBdy

CLy = tiglchm(t) ,
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then Equatior@?) yieldsy, | = Cl - Furthermore, we finally need the set

Mpy(0F):={teR:CLy(t)=C;,},

which contains all global minimizers ¢f— Cy, ,(t). Note that we always hawg , <
oo, and hence the definition o1, ,,(0") coincides with that on page 53 df [14].
Moreover, our considerations above shéxy,, ,,(07) = M, . (07). The following
lemma collects some useful properties of the latter set.

Lemma 3.4 Let L # 0 be a convex, classification calibrated, and margin-based loss
represented by : R — [0,00). Moreover, we fix @ € R with0 < 6 < 1/2. Then,
forall n € [§,1 — ¢], the function

t— Cpy(t)
has a global minimum, i.eM, ,,(07) # 0. Writing
Ms :=inf Mp15(07) =inf{t € R: Ls(1,t) < Ls(1,s) forall s € R},
we further havé < Ms < oo and
My, (07) C [-Ms, Ms], ne(6,1-9). (18)

Moreover, ify is strictly convex M, ,,(0) contains exactly one element, denoted by
ty,foralln € [6,1 — d]. In this case,
n—t

is @ monotonically increasing function ¢ 1 — 4], and the restrictionp|(_ rs;, az,) Of
o to [—Ms, M;s] is strictly decreasing.

Proof: The convexity of the representing functigrof L implieslim; ., ¢(t) = oo
or lim;_, . ¢(t) = co. From this we conclude théitm; . Cr ,(t) = oo, and hence
the convexity oft — Cr, , (t) shows that this function has a global minimum.

To show the second assertion, we first observe tiat> 0 by the classification cali-
bration of L and [14, Lemma 3.33]. Moreover, [14, Lemma 8.31] yields

sup My, ,(07) <inf My 1-5(07) = Ms, n<l-9¢
and
inf My, (07) = —sup My, 1, (07) > —inf My 1_5(0") = —M;
foralln > ¢.

For the proof of the last assertion, we first observe that the strict convexitynoplies
thatt — Cy. ,(¢) is strictly convex, and hence this function has indeed a unique global
minimizer. The monotonicity ofy — ¢; then follows by another application of [14,
Lemma 8.31]. Finally, ifp is decreasing, the last assertion is trivial. On the other hand,
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if ¢ is not decreasingl [14, Lemma 8.37] shows that= inf{t € R : 0 € 9¢(¢)},
wheredp(t) denotes the subdifferential gfatt, satisfied) < t; < oo and0 € dp(ty).
Consequently, we havg = inf M, 1(0"), and hence we obtain

Ms < sup ML7175(0+) < inf./\/lL’1(0+) =ty

by yet another application of [14, Lemma 8.31]. Moreover, by the convexity, efe
see thatp is strictly decreasing of+oc, to], and hence the last assertion followsll

Proof of Lemmg 2.7:i). Trivial.

ii). SinceLs(1,t) = Cri1-s(t) andLs(—1,t) = Cr5(t) for all t € R, we see by
Lemmd 3.4 that the functionts— Ls(1,¢) andt — Ls(—1,¢) have global minima at
Mgy and—Ms, respectively. Using [14, Lemma 2.23], we then obtain the assertion.

iii). This is an immediate consequence[of|(17). |

Proof of Propositior] 2.9:Following Lemmg 34 we denote the unique minimizer of
t — Cpp(t) byt;. By ) andp® ¢ [5,1 — §] itis easy to see that ;, is the unique

minimizer oft — Cr, ,(t). Forn € [0, 1] andt € R we now define

M(n,t) = n(Ls(Lt) = Ls(1,£55))" + (1 =) (Ls(—1,8) — Ls(~1,5s))

E(n,t) = n(Ls(1,t) = Ls(1, 1)) + (1 =) (Ls(=1,t) — Ls (=1, ) -
Obviously, it then suffices to show
M(n,t) < (o(Ms) + @(=Ms) + CL(9)) E(n, 1) (19)
for all n € [0,1] andt € [—Ms, Ms]. To this end, we further define
N.t) = n(e(t) = o)+ 0 =) (e(=) = p(=13))°
D(n,t) = n(e(t) —e(ty) + 1 —n)(e(=t) — o(t}))

forn € [§,1 — 6] andt € [—M;, M;s). SinceCy, ,,(t) = np(t) + (1 — n)p(—t), t € R,
the minimizert;, satisfies

ne'(ty) = (1 —n)¢'(—t;) (20)
foralln € [6,1 — §]. As in the proof of([4, Lemma 19], we thus obtain

oD

afn(nﬂf) = (o(t) —o(t5)) — ((=t) — o(—t))
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%(m)
= (p() = o(t)" = (p(=1) = (~13))
2 (plt) — () (1) 4 +2(1 = 1) (=) — o)) (1) 5
U on
= (e = w(t3)) = (p(=t) = o(=1:))) ((0(t) = £(t3) + ((=1) = (1))
ot

=206/ (1) (((0) = 0(53)) = (#(=1) = 2(=1) ) 5!

= (60— olt3) + (o0~ o(t3) 20 6) 52 ) S 00,

where we used (20) to obtain the second equality. We now define

*

ot
Cs = sup{ (1) = pl=t3) ~ 20/ (1) 52 s € 61— 1,

and observe by the last assertion of Le 3.4%dm, t) > 0if and only if t < 7.
Consequently, we find

ON oD

a—n(n,t) < (p(t) + (—t) + max{0, 05})37(’”“

foralln € [6,1 — é] andt € [-M;, Ms] satisfyingt < t;. Analogously, we obtain
the inverse inequality for > ¢7. SinceN (n,t;) = D(n,t;) = 0 for all n € [0, 1], the
fundamental theorem of calculus thus shows

N(n.t) < (p(t) + (=) + max{0, Cs}) D(n,t) (21)
foralln € [§,1 — §] andt € [—Ms, Ms]. In order to estimat€’s, we now observe that

o P+t

o ne(tp) + (1 =)@ (—t3)”
and hence (30) yields
oty

—2n¢'(ty) o = (@' (ty) + &' (7)) -

= WE)+Y(0) - Ty -
PGS o' (=t3)

From this we conclude

. 20' () (=) (@' (E) + ' (=17)) 3
Cs = { o (—t )" (t0) + ¢ ()" (— 1) o(ty) o( tn)-ne[&l 5]}
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Furthermore, the monotonicity of on [—Mjs, Ms], see Lemmp 3|4, yields
(‘P(t) - @(t;(m)) (‘P(_t) - @(—tf,(s))) <0

foralln € [0,1] and allt € [— M5, Ms], and hence we have

M(n,t) = n((1=0)(p(t) = p(tsm)) +8((—t) — o(~tiw)))
(1= ) (1= 8) (1) = p(~t0) + 8((t) — p(ths)))?
= (1= 6)%(pt) — ths))’
+n52(<p( t) = p(—tis))”
— )8 (p(t) — p(tin))”
< — )1 =8 (p(—t) — p(~tie))”

+20(1 = 8) (p(t) — @(tys)) (9(=t) — (1))
< 01 =8)(p(t) — e(tye))”
+775( (=) — o(~ty))

n)d(e(t) — o ,,(6)))2

2

( (1 =) (p(—t) = ()
= 7O (plt) — pthn))” ( <‘”>( (1) = @(~tis))”
N(n®,t)

where in the inequality we used < ¢ and(1 — §)? < 1 — 4. Moreover, by|(1}7) we
have

D0, 1) = Cp o (1) = C oy = CLyn(t) = Ciy = E(n,1)
for all n € [0, 1] and¢ € R. In addition, we have

@(t) +@(—t) = 2Cp1/2(t) < 2Cp1/2(Ms) = o(Ms) + o(—Ms)

forall t € [-Ms, Ms] by the convexity and symmetry of— C,;,2(t). Combining
these considerations WItBZl) and bath) € [5,1 — ] andt*<5) € [-Ms, Ms], we
then obtain[(IP). |

Proof of Theoren{ 2.IpOur goal is to apply[14, Theorem 7.20]. To this end we define
YT :E —[0,00) by Y(f) := A|f||le, f € E. By Lemmd 3.1 we recall that is strictly
decreasing on the intervat M5, M;], and hence we easily find

Lé(y7t) < CP(*M(S) ’ y= :l:la te [7M57 MS] ;

i.e., the supremum bound (7.35) [n]14] is satisfied #r.= ¢(—M;). Moreover,
Propositior] 2.p shows that the variance bound (7.36) in [14] is satisfiet!:ferl and
V = ¢(M;s) + o(—Ms) + Cr (). In addition, we obviously have > B2~ In the
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following, we pick a functionf, € E with A||follz + Ri,p(fo) — R}, p < 24(N).
The assumptions oh then yield

L5 0 Jolloo < 1+ lfolle <14+ 222,
In the following, we thus seB, := B+ %(A). Last but not least, the definitions (7.32)
—(7.34) in [14] become
o= e+ Re () R,
Fo = {f € B A|flp+Regr(f) ~Ri,p <7},
He = {Lsof —Lso fi,p: [ €F},

where the latter two sets are only defined for- r*. Now observe that fof € F,.
we have)| f|[z < r, and hence we conclude thaf C {Bg. SinceL; is Lipschitz
continuous with Ls|; < |L]; < 1, we thus find

Ep~pnei(Hy, L2(D)) < Epypy €i(Fr, La(Dx)) < 2rA"lai™% .

Moreover, forf € F,., we haveEp (L o f — Lo fztp)2 < Vr, and consequently [14,
Theorem 7.16] shows that the Rademacher average in (7.37) of [14] is bounded by the
function

4p _, 1 22 2o 2p _ 1
on(r) = cL((S,p)maX{apr T A\ PpnT2 aTHer TR AT THe 1+P},

wherecr(6,p) > 1 is a constant only depending dn §, andp. Obviously, this
function does in general not satisfy the condition(4r) < 2¢,,(r), r > r*, required
in [14, Theorem 7.20]. However, it satisfies (4r) < 45" on(r), r > r*, and since
1‘2*—1) < 1is all we need for the peeling argument|[14, Theorem 7.7] employed in the
proof of [14, Theorem 7.20], Condition (7.38) (n]14] only changes by a consfant

front of 30, (r). Consequently, Condition (7.38) reduces to

. a® N\t TTVr  10TA(N)
r > ér(d,p) (fzpn) o AR
From this we easily obtain the assertion byi[14, Theorem 7.20]. |
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